SPACE ANALYSIS

Space analysis is a process that allows an estimation of the space required in each arch to fulfil the treatment aims. It helps to determine whether the treatment aims are feasible, and assists with the planning of treatment mechanics and anchorage control. Space planning is carried out in 2 phases:

1- to determine the space required for relief of crowding, overjet correction and creating space for any planned prostheses.

2- calculates the amount of space that will be created during treatment by molar distalization, arch expansion, inter-proximal stripping …etc.

Before undertaking a space analysis, the aims of the treatment should be determined as this will affect the amount of space required or created.

Space analysis can act only as a guide, as many aspects of orthodontics cannot be accurately predicted, such as growth, the individual patient’s biological response and patient compliance.

MIXED DENTITION ANALYSIS:

In mixed dentition space analysis, mesiodistal width of unerupted canine and premolars is predicted so that discrepancy between space available and space required for these teeth in the dental arch can be determined. There are three main approaches to mixed dentition space analysis:

a) Measurement from radiographs:

The widths of unerupted canine and premolars is estimated using proportionate measurement from radiographs, which takes into account any magnification. The widths of permanent canine and premolars are measured directly from dental radiographs. The width of a deciduous molar is measured from the radiograph and from the dental cast and the following equation is used:

\[
\frac{\text{Unerupted tooth true width}}{\text{Unerupted tooth radiographic width}} = \frac{\text{Deciduous molar true width}}{\text{Deciduous molar radiographic width}}
\]

Then the combined widths of the permanent canine and premolars is compared to the combined widths of the deciduous canine and molars.
b) Prediction tables or equation:

They are based on the direct measurement of the mesiodistal width of already erupted permanent teeth especially mandibular incisors to estimate the size of unerupted canine and premolars. The most commonly used are Moyer’s Mixed Dentition Analysis and Tanaka and Johnson Analysis. They predict the combined widths of the unerupted canines and premolars from the widths of the mandibular incisors. The mandibular incisors were chosen because of their early eruption. The maxillary incisors are not used since they show a lot variability in size.

Moyers Mixed Dentition Analysis: The greatest mesiodistal width of each of the four mandibular incisors is measured from a cast and summed up. Then the combined widths of the unerupted canines and premolars are predicted by use of probability charts. In the tables, 75% level of probability is used as it is the most practical from a clinical standpoint.

Remember that the width of the lower incisors is used to predict upper canine and premolars widths too.
Tanaka and Johnson Analysis: They simplified Moyers 75% level of prediction table into a formula to predicted the width of maxillary canine and premolars (in one quadrant):

\[
Upper \text{ canine } \& \text{ premolars widths} = \frac{\text{width of four lower incisors}}{2} + 11\text{mm}
\]

\[
Lower \text{ canine } \& \text{ premolars widths} = \frac{\text{width of four lower incisors}}{2} + 10.5\text{mm}
\]

c) Combination of radiograph and prediction equation:

This is done by using direct measurement of the mandibular incisors and proportionate measurement of the premolars and canine from radiographs.

After predicting the width of the unerupted canine and premolars:

1- Determine the amount of space needed for alignment of the incisors.

2- Measure the amount of space available of canine and premolars from the mesial surface of the first permanent molar to the distal surface of the lateral incisor.

3- Subtract the space needed for incisor alignment, any necessary molar adjustment and overjet correction. This is the actual space available.

4- Finally compare the space available with the predicted canine and premolar widths to estimate space need. This will help to decide on the use of space regainers or space maintainers.

a) Space need of 2mm per quadrant can be treated by lingual or palatal arch to preserve Leeway space giving room for eruption of the permanent premolars and canines and proper alignment of incisors.

b) Space need of 3mm per quadrant should be referred to the orthodontist to plan for space creation during the mixed dentition or later during comprehensive orthodontic treatment.
PERMANENT DENTITION ANALYSIS:

The aim of space analysis is to determine the space and anchorage requirements for orthodontic treatment.

Commonly Used Methods

1- Visualization is the most commonly used method but is inaccurate in quantifying crowding.

2- The amount of crowding can be calculated by measuring the mesiodistal width of any misaligned tooth in relation to the available space in the arch. This process is repeated for all the misaligned teeth in the arch to give the total extent of crowding.

3- Arch perimeter/ Carey’s Analysis: the mesiodistal widths of the incisors, canines and premolars are measured by a divider and the sum represents the space needed. A soft brass wire is passed from the mesial surface of the first molar to the contra-lateral side. The wire passes along the buccal cusps of premolars and incisal edges of the anteriors. In crowded arches, the wire should be pass according to the arch form that reflects the majority of the teeth. The wire should pass along the cingula of anterior teeth if they are proclined and along their labial surfaces if they are retroclined. The wire is then straightened to measure the space available. The difference is the space need or excess.
4- Segmental arch analysis: The same as Carey’s Analysis but done in three segments; from the mesial of the first molars to the mesial of the canines for the distal segments and between the mesial of the canines for the anterior segment.

5- Digital 3D scanning: Many software programs are equipped with a facility to plot contact points in order to identify the arch form, as well as a ‘virtual ruler’ that can measure mesiodistal tooth widths.
Malocclusion Features to Consider in Space Analysis:

1) **Crowding and spacing:**

Crowding and spacing should be measured mesial to the first permanent molars in relationship to the archform that fits the majority of teeth. The mesiodistal width of the malaligned teeth is measured followed by the available space within the archform. Crowding can be quantified as mild (<4 mm), moderate (4–8 mm) or severe (≥8 mm).

If the second deciduous molars are retained, approximately 1 mm of space per quadrant will be available following exfoliation and eruption of second premolars in the upper arch and 2 mm in each quadrant in the lower arch.

2) **Incisor anteroposterior movement**

With few exceptions, the lower incisor anteroposterior (AP) position should be accepted to maximize stability. In Class II malocclusions, the upper incisors must be retracted for overjet reduction.

Conversely, in Class III malocclusions the upper incisors may be advanced and the lowers retracted to correct a reverse overjet. For every 1 mm all four incisors are retracted, 2 mm of space (1 mm per quadrant) is required. Conversely, for every 1 mm all four incisors are advanced, 2 mm of space will be created.

3) **Correction of upper incisor angulation and inclination**

Changing the inclination (torque) of incisors has space implications. When the upper incisors are proclined, the overjet increases and space is required to normalize this increase. When proclined incisors are retroclined, every 5° of retroclination will reduce the overjet by 0.5 mm and requires 1 mm of space.

The space requirement to correct incisor angulation (mesiodistal tip) is usually minimal.
4) **Levelling the curve of Spee**

Where there is no occlusal stop the lower incisors may over-erupt resulting in an occlusal curve which runs from the molars to the incisors (Curve of Spee). Levelling an increased curve of Spee requires 1 to 2mm of space depending on the depth of the curve, which is measured from the premolar cusps to a flat plane joining the distal cusps of first permanent molars and incisors. Flattening deep curves of Spee increasing arch length and labially proclines the incisor teeth.

5) **Arch contraction and expansion**

Upper arch lateral expansion is undertaken for posterior crossbite correction and is useful in providing space for the relief of crowding and/or overjet reduction. Every 1 mm of lateral expansion creates approximately 0.5 mm of space within the arch. While, arch contraction requires space.

6) **Tooth reshaping or replacement**

Mesiodistal enlargement of microdont teeth and replacement of missing teeth require space. Also, extremely large teeth need to be stripped to normal size. This needs to be taken into account when determining total arch space requirements.

Once all of the above factors have been considered, it is possible to calculate the space required within each arch.
Calculating Space Requirement:

A patient has:

- 6mm overjet
- 3mm curve of Spee in the lower arch
- 2mm upper arch crowding
- 2mm lower arch spacing
- requires upper arch expansion of 4mm
- requires 2mm stripping of his large upper central incisors

Calculate the space requirement.

- The overjet is increased by 4mm \((6 – 2 = 4\text{mm})\). To reduce overjet to normal 8mm of space is required \((4 \times 2 = 8\text{mm}, 4\text{mm of each side})\).
- Leveling a 3mm deep curve of Spee requires 1mm of space.
- 4mm of expansion creates 2mm of space within the upper arch

<table>
<thead>
<tr>
<th></th>
<th>Lower arch</th>
<th>Upper arch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crowding / spacing</td>
<td>+2 mm</td>
<td>-2 mm</td>
</tr>
<tr>
<td>Incisor AP movement</td>
<td>+8 mm</td>
<td></td>
</tr>
<tr>
<td>Incisor inclination</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Levelling the curve of Spee</td>
<td></td>
<td>+1 mm</td>
</tr>
<tr>
<td>Arch contraction / expansion</td>
<td>-2 mm</td>
<td></td>
</tr>
<tr>
<td>Tooth enlargement / replacement</td>
<td>-2 mm</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>+ 6 mm</td>
<td>-1 mm</td>
</tr>
</tbody>
</table>

A negative score shows a space gain; a positive score shows space requirement.

The patient has 6mm space need in the upper arch and 1mm extra space in the lower arch.
BOLTON RATIOS AND TOOTH-SIZE DISCREPANCY

A tooth-size discrepancy is a disproportion amongst the sizes of individual teeth and is a reason why it can be impossible to achieve an ideal occlusion orthodontically (interdigitation, overjet, overbite).

Common examples of a Bolton discrepancy include the presence of small maxillary lateral incisors and class III malocclusions, where there is a tendency towards a relative mandibular tooth excess.

Bolton evaluated the ideal ratio of tooth material between the maxillary and mandibular arch on 55 cases with excellent occlusions. The maxillary tooth material should approximate desirable ratios, as compared to the mandibular tooth material. Bolton’s analysis helps to determine the disproportion between the size of the maxillary and mandibular teeth.

From this, he described two ratios for ideal occlusion: the first for the ratio of tooth widths associated with the anterior teeth (anterior ratio) and the second for the whole arch from the first molars forwards (overall ratio).

Overall ratio: The sum of the mesiodistal widths of the 12 mandibular teeth should be 91.3% the mesiodistal widths of the 12 maxillary teeth. If the overall ratio is greater than 91.3%, then the mandibular tooth material is excessive; but if the overall ratio is less than 91.3%, then the maxillary tooth material is excessive.

Anterior ratio: The sum of the mesiodistal diameter of the 6 mandibular anterior teeth should be 77.2% the mesiodistal widths of the 6 maxillary anterior teeth. If the anterior ratio is greater than 77.2%, then the mandibular anterior tooth material is excessive.

Drawbacks of Bolton Analysis:

1. This study was done on a specific population.
2. It doesn’t take into account gender difference in the maxillary canine widths.