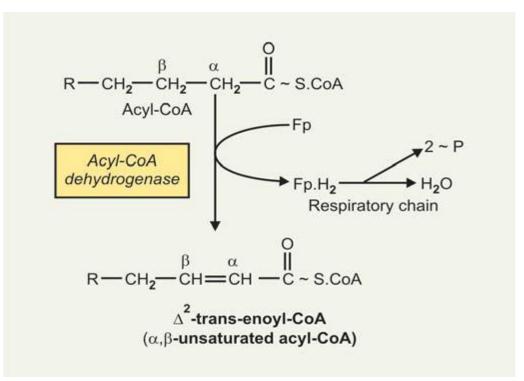
BIOCHEMISTRY

Lec:3 ^{2nd} stage

Dr. shaimaa S.Mutlak

METABOLISM OF LIPIDS


STEPS OF β-OXIDATION

Once acyl-CoA is transported by carnitine in the mitochondrial matrix, it undergoes β -oxidation by Fatty acid oxidase complex. The successive steps are as follows:

1. Dehydrogenation: Removal of 2 H atoms:

Removal of two hydrogen atoms from the 2 (α) and 3 (β) carbon atoms is catalysed by the enzyme **acyl-CoA dehydrogenase**, resulting in formation of $\Delta 2$ transenoyl-CoA (also called α , β -unsaturated acyl-CoA).

Hydrogen acceptor, i.e the co-enzyme for this dehydrogenase is a **flavo-protein**, containing FAD as prosthetic group, whose re-oxidation in the respiratory chain requires the mediation of another flavoprotein, called **electron transferring flavoprotein** (**ETF**) + 2 **ATP**

Types of acyl-CoA dehydrogenases: At least three acyl-CoA dehydrogenases have been described:

- 1. **"G"-green-coloured,** cu-containing, catalyses oxidation of fatty acids having chain length–C4 to C8.
- 2. **'Y' or 'y1'-Yellow** flavo protein, catalyses oxidation of FA having chain length –C4 to C18, more specific for C6 "hexonyl-CoA dehydrogenase"
- 3. **'y' or 'Y2'-**more active on FA having chain-length C6 to C18. Maximum activity on FA having chain-length C16 "hexa-decanoyl dehydrogenase".

2. Hydration: Addition of one molecule of H2O:

One molecule of water is added to saturate the double bond to form 3-OH acyl-CoA (called also as β -OH acyl-CoA), the reaction is catalysed by the enzyme " Δ 2 - enoyl -CoA hydratase" (also called as Enoyl hydrolase).

3. Dehydrogenation: Removal of 2 hydrogen atoms:

The 3 – OH – Acyl-CoA undergoes further dehydrogenation on the 3 carbon, catalysed by the enzyme **3–OH–acyl-CoA dehydrogenase**, to form the corresponding 3–ketoacyl-CoA (β -ketoacyl-CoA).

Hydrogen acceptor, i.e. coenzyme of this dehydrogenase is NAD+. Reduced NAD when oxidized in respiratory chain produces 3 ATP.

4. Thiolytic cleavage:

Finally, 3-keto-acyl-CoA is split at the 2,3 position by **thiolase** ("3 – keto acyl thiolase" or "acetyl–CoA acyl transferase"), which catalyses a thiolytic cleavage involving another molecule of CoA.

End-products of this reaction: The thiolytic cleavage results in formation of:

- 1. One molecule of acetyl-CoA.
- 2. An acyl-CoA molecule containing 2-carbons less than the original acyl-CoA molecule, which enters for oxidation by the enzyme acyl-CoA dehydrogenase (reenters at step 1).

In this way, a long-chain FA may be degraded completely to "acetyl-CoA" (C-2 units). Acetyl-CoA can be oxidized to CO2 and H2O and thus complete oxidation of FA is achieved. Thus, end-product of β -oxidation of a

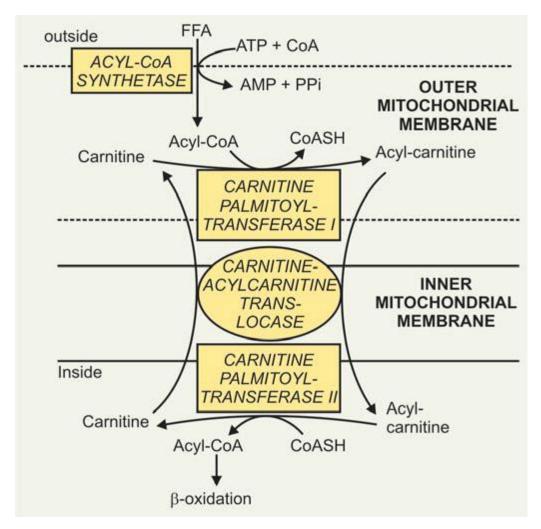
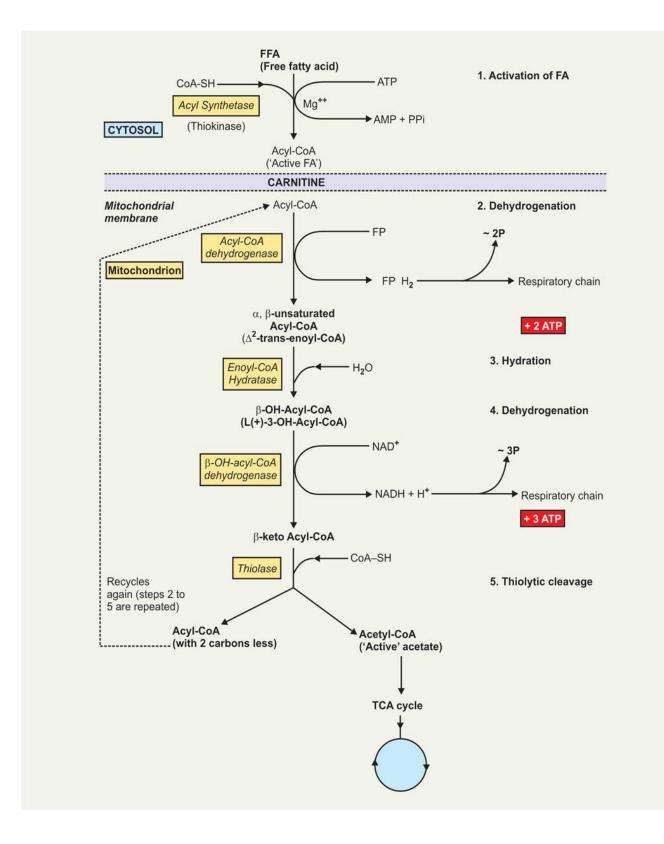
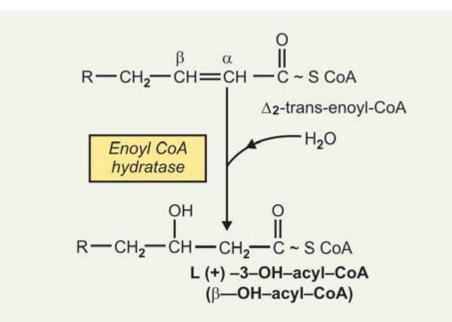
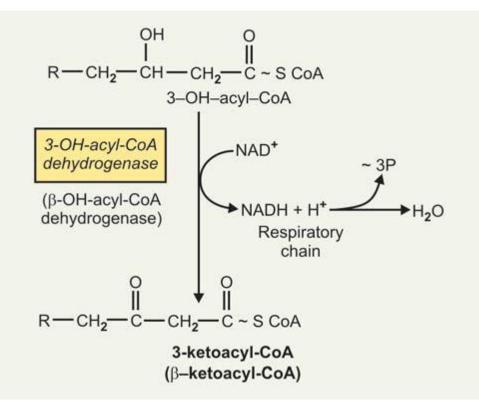
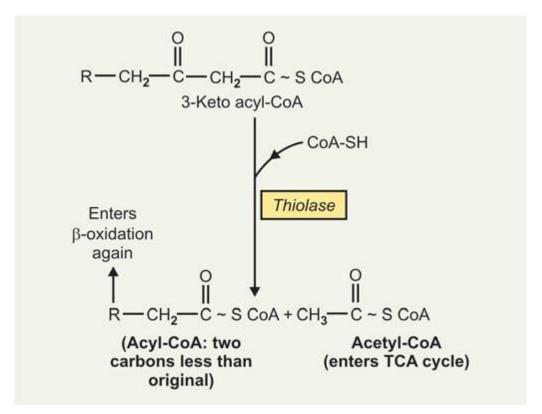






Fig: Role of carnitine in the transport of long-chain FA

How many acetyl-CoA are produced from β -oxidation of palmitic acid? Palmitic acid is C15 H31 COOH. In β -oxidation, it will **undergo 7** (seven) cycles, producing 7 acetyl-CoA (in 7 cycles) + 1 acetyl-CoA (last cycle-one extra). \therefore Total acetyl-CoA produced by β -oxidation of one molecule of palmitic acid

= 8 acetyl-CoA.

β-Oxidation of FA with an odd number of carbon Atoms: Fatty acids with an odd number of carbon atoms are oxidized by β-oxidation pathway to produce acetyl-CoA until a 3-carbon residue **propionyl-CoA** is left. Propionyl-CoA is metabolised to succinyl-CoA through methyl malonyl-CoA.

Bioenergetics of β -Oxidation and its Efficiency

Palmitic acid, C15H31COOH, on complete oxidation (β -oxidation) **produces 8 acetyl-CoA** (Refer discussion above). Transport of electrons in respiratory chain from reduced Fp and NAD in each cycle produces 5 (five) high energy phosphate bonds.

Hence, 7 cycles $(7 \times 5) = 35 \sim P$ Total 8 molecules of acetyl-CoA, When oxidised in TCA cycle will produce = $12 \times 8 = 96 \sim P$ Total high energy phosphate bonds produced = $131 \sim P$ Total = 131 ~ P In initial activation of FA~ P bond utilised = $-2 \sim P$ \therefore Total gain = 129 ~ P \therefore Energy Production = $129 \times 7.6 = 980$ Kc $(or 129 \times 30.5 = 3935 \text{ Kj})$ Caloric value of Palmitic acid (Bomb calorimeter) = 2340 Kc/molHence, efficiency = $980/2340 \times 100 = 41\%$ of the total energy of combustion of FA.

Β. α-ΟΧΙ**D**ΑΤΙΟΝ

 α -oxidation is another alternative pathway for oxidation of FA which involves decarboxylation of the COOH group after hydroxylation and the formation of a FA containing an "odd" number of carbon atoms, which subsequently undergoes repeated β -oxidation. No initial activation of FA is necessary in this process.

C. ω-OXIDATION (VERKADE)

In ω -oxidation, Fatty acids undergo oxidation at the carbon atom farthest removed from the carboxyl group (ω -carbon) producing a *dicarboxylic acid*, which is then subjected to β -oxidation and cleavage to form successively smaller dicarboxylic acids. Both processes occur principally in brain microsomes but are negligible in extent as compared to β -oxidation.

Essential differences and similarities between α -oxidation and ω -oxidation are shown in **Table**.

α-oxidation	<i>w-oxidation</i>
1. Substrate: Even carbon long-chain FA (some of them)	1. Some medium- and long-chain FA
2. Presence of O2 —oxidised aerobically in presence of O2	02
3. Sites: Microsomes of brain and liver	3. Liver microsomes
4. Enzyme :α-hydroxylase-a monooxygenase	4. FA ω-hydroxylase also a onooxygenase
5. Cofactors required —Fe++, Vitamin C/FH4	reductase and NADP+
6. No initial activation of FA is required	6. No initial activation of FA is necessary.
7. Steps: (i) Step-1: Formation of α -OH-FA $R - CH2 - CH2 - CH2 - COOH$ $\alpha - hydroxylase \qquad \qquad Fe++ \\ Vit C/or FH4$ OH $R - CH2 - CH2 - CH - COOH$ $\alpha - OH - FA$	7. Steps: (i) Step-1: Hydroxylation of ω carbon. CH3 - CH2 - (CH2)n - CH2 - COOH ω -hydroxylase H2O Cyt P 450 OH CH2 - CH2 - (CH2)n - CH2 - COOH ω -OH-FA

Table 1: Differences in α**-and** ω**-oxidation**

(ii) Step-2: Decarboxylation to produce an OH R – CH2 – CH2 – CH – COOH Dehydrogenase NAD+ NAD+ NAD+ NAD+ NAD+ NAD+ NAD+ NAD+ NAD+ R – CH2 – CH2 – C – COOH α —keto acid CO2 R – CH2 – CH2 – CH2 – COOH Odd chain FA with one carbon less	(ii) Step-2: ω -OH FA is oxidised with the help of an NADPdependent enzyme to produce- α - ω dicarboxylic acid OH CH2 - CH2 -(CH2)n - CH2 - COOH ω - OH FA NADP+ Enz NADPH + H+ H C - CH2 - (CH2)n - CH2 - COOH O Aldehyde Enz O2 HOOC - CH2 - (CH2)n - CH2 - COOH
(iii) Step-3: Odd chain FA undergoes repeated	α, ω—dicarboxylic acid(iii) Step-3: Even carbon dicarboxylic acid
β -oxidation to produce (Acetyl-CoA)n +	then undergoes-repeated β -oxidation to yield
Propionyl-CoA"	(Acetyl-CoA)n and one molecule of
Succinyl-CoA	succinyl-CoA (intermediate in TCA Cycle).
	TCA cycle
TCA cycle	