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I 
 

Abstract:  
Cystic fibrosis is the most common hereditary lethal disease in the Western world, 

resulting from defects in the expression or function of cystic fibrosis transmembrane 

conductance regulator (CFTR), a chloride ion channel that controls the movement of salt 

and water through epithelial cells in multiple organs including airway, intestine and 

genitourinary system, and has anti-inflammatory and antioxidant properties. 

The hypothesis tested in this research is that CFTR expressed in normal human lung 

microvascular endothelial cells protects the cells from inflammatory changes and 

oxidative stress. 

A low level of stable CFTR, which was down-regulated by CFTR activity was found. 

Pharmacological inhibition of CFTR in endothelial cells results in a rapid increase in 

production of reactive oxygen species and a decrease in the abundance of the 

transcriptional factor Nrf2, both of which are characteristic of oxidative stress. An 

increase in production of vascular endothelial growth factor was a consequence of this 

oxidative stress. Furthermore, CFTR inhibition in endothelial cells results in an increase in 

IL-8 production through activation of the activator protein-1 pathway, which is mediated 

through activation of the epidermal growth factor receptor. Also inhibition of CFTR in 

neutrophils increased the expression of neutrophil elastase activity on the cells surface in 

response to opsonized zymosan, indicating a mechanism for the observation that 

neutrophil surface elastase activity correlates with decline in lung function in patients 

with CF. 

Exposing endothelial cells to shear stress significantly enhanced the production of nitric 

oxide and reduced endothelin-1 release from vascular endothelia cells, and the responses 

were not influenced by CFTR function. In addition, CFTR inhibition increased F-actin 

polymerisation and influenced the distribution of F-actin, preventing the alignment of 

cells with the direction of shear flow.  

Treatment of endothelial cells with antioxidant decreases both oxidative and 

inflammatory changes after CFTR inhibition by reducing reactive oxygen species 

production and reduced IL-8 production. The data indicates that endothelial CFTR may be 

a target for oral systemic potentiators and correctors that are in development for CF. 
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